
UCRL-ID-135342

Solvers as Operators

M.G. Knepley
A.J. Cleary

August 2,1999

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and may or
may not be those of the Laboratory.
Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405ENG-48.

DISCLAIMER

This document was prepared as an acccount of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that ik use would not infringe privately own righk.
Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply ik endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FIZ 626-8401

Available to the public from the
National Technical Information Service

us. Department of commerc-e
5285 Port Royal Rd.,

Springfie!d, VA 22161

Solvers as Operators
Proposal for the ESI Solver Interface

Matthew G. Knepley
Computer Science Department
Purdue University
West Lafayette, IN 47906- 1398
knepiey@cs.purdue.edu
Phone: (765) 494 7816, FAX: (765) 494 0739

Andrew J. Cleaty
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94550
cleatyl @Ilnl.gov
Phone: (925) 422 1939, FAX: (925) 423 2993

This proposal details an interface hierarchy for objects whose major function is the mapping of a
finite dimensional vector space of dimension m to another vector space of dimension n. Th&
includes many important objects in a solver library, including matrices, their transposes and
inverses. solvers. preconditioners, iterative methods, and nonlinear maps. A unifying framework
for finite dimensional operators and solvers is proposed which utilizes the composttton operation
from the operator algebra to achieve great functionality while reducing the size of the interface and
complexity of the class structure. A second composition operation is &troduced to handle the
composition of approximate solution techniques, and related to several common preconditioning
techniques.

Solvers as Operators

The goal of the model presented here is to derive a common abstraction from these objects,
incorporating the matheamtical structure of these maps into a single interface, so that clients of
these objects can use them in a uniform manner, and to introduce operations on these objects that
define an algebra that provides for a powerful mechanism for generating new operators from old
operators in a flexible and extensible way. Some benefits of general algebraic constructions have
already been identified, but perhaps more importantly, this rich structure leaves room for
combinations that may be developed by future research, thus greatly increasing the chances that the
ES1 standard will be sufficient for expressing future generations of algorithms. Standard efforts
frequently suffer from rapid obsolescence, and a standard that can grow with time is highly
desirable.
At the same time, it is essential that making legacy code ES1 compliant not impose an undue
burden on the original programmer. To this end, we show how solvers written in several styles can
be made compliant with this proposal in a straightforward way. In some cases there are several

2 ESl-Operator.nb

options for achieving compliance, which is consistent with the ES1 strategy of putting the burden of
choice on developers writing to the ES1 standard rather than on the crafters of the standard.
The most controversial aspect of this proposal is that it does not include a specific preconditioner
class. It is our stance that preconditioning is a role played by specific operators in certain
circumstances, rather than a separate type of object meriting its own class. As a simple analogy,
consider a banking system which includes a multipurpose Customer class. When implementing a
Transaction interface, it is desirable to have an associated transaction-customer member. The
implementers may choose to make transaction-customer a Customer, or to develop a more specific
Transactioncustomer class. If the first choice is made, no new class is needed, and objects of type
Customer can be transparently exchanged between Transactions and other parts of the system. On
the other hand, if requiring a transaction-customer to be of type Customer introduces significantly
new requirements for the Customer class, then the second solution may make more sense,
particularly if TransactionCustomer is a subclass of Customer. For preconditioners we have a
similar choice, and we argue that there is an enormous utility in retaining the generality of the
Operator interface for both solvers and preconditioners.
The competing proposal makes the argument that preconditioning can take several forms requiring
different things from the preconditioner, and thus a utility class is a better solution. However, we
argue in this proposal that the extra functionality required of special preconditioners, which include
split preconditioners and ej,Eciency-trick preconditioners like Eisenstat’s SSOR, may be derived in
a straightforward way from the underlying mathematical structure of the space of operators
embodied in our interface. Thus, while we believe that both proposals address the extant scenarios
that ES1 has put forth, our proposal does so in a way that is more flexible in that it does not hard
code the preconditioning relationship into a class. Our model also allows ESI-compliant classes to
be easily combined in unanticipated ways without changing the interface. Consider a user who
would like to precondition a solver with a matrix that directly approximates the inverse of the
system operator. In our model, this matrix could be used directly as a preconditioner without
constructing a wrapper. In the previous model, only an object of type Preconditioner can be used as
a preconditioner to a solver, so the user must write or borrow code that can encapsulate their matrix
as a Preconditioner. We view easy plu g-and-play behavior at the user level as extremely
important, and requiring even straightforward wrapper code a significant hurdle, enough to
discourage some users from experimenting with novel solution strategies. Also, writing
ESI-compliant code may be subtly harder than one would expect. For instance, it is not clear which
language the user should choose for this wrapper. While the same question is valid for developers
of ES1 compliant components, we prefer to put the burden of implementation on knowledgable
developers, where the cost is amortized over all users of a particular component, rather than on
users, where the cost is multiplied by the number of users.
Similarly, this proposal includes in the interface an algebra for approximate solution techniques.
This algebra is based upon subspace or residual correction, a general concept important in the
theory of iterative methods. Again, while the functionality of this approach can be coded directly by
developers, by defining the algebra, the model allows users to experiment with various
combinations of iterative methods using any appropriate ESI-compliant objects, without writing
new wrapper classes or auxilliary logic. The necessary operations are written once by developers
and that cost is amortized over all user uses.

ESI-Operator.nb 3

2. Interface Hierarchy

n Operators

The motivation for establishing the Operator interface is to abstract out the common features of
arbitrary nonlinear finite dimensional maps, which may correspond to both exact and approximate
representations of infinite dimensional maps in some Banach space, as well as arbitrary finite
dimensional transformations. Thus the Operator interface must contain an apply function which
takes as input an ESI-Vector and returns the action of that operator as output in another
ESI-Vector. The necessity of supporting Fortran may prohibit aliasing of the input vector to the
output vector. The Operator interface will also contain a setup method so that any auxiliary data
structures or calculation may be handled prior to application, and a getDimensions method
returning the sizes of the domain and range spaces.
The application of the transpose and hermitian conjugate are realized by constructing a new
operator from an existing one, whose apply function implements that operation. The
OperatorTranspose interface, for instance, would be implemented by those operators able to
construct such a transpose. Reference counting techniques should allow data structures to be
efficiently shared between the instantiations. This is also the philosophy we will use in order to
derive the Solver interfaces, and to deal with preconditioner abstractions. Finally, an algebra (and
in special cases group structure) can be derived for the Operator interface so that new Operator
objects can be constructed through algebraic operations such as composition (or inversion in a
group). The aspects of this composition property will be discussed further in sections 4 and 5.
This encapsulation of various actions of the operator in separate objects is an instance of the
Strategy pattern[2]. Abstractly, this pattern defines a family of algorithms, each one of which is
encapsulated in a separate object, which all implement a uniform interface. In this way the
algorithm can vary independently of the client code which manipulates it. The Operator interface
functions as the Compositor in the pattern with the uniform interface apply corrseponding to
Compose. This also allows the tranpose or conjugate to be passed independently to other
algorithms without modification.

: _ . CM.;)’ f <:I .<’ i,> ,,; - ,.;,i. ,>’ i.‘ x i. <:. !r. ” ‘: ,f.; ,‘:‘ .’ {
..ir! setup () ;
3‘ getDimensions (out .I:?:.. m, out i:?c n) ;

j:.I;. apply(in .' ;: :.;;i x, out ::,. ';,:I., >r‘ y) ;

ILL*. COmpOSeLeft (in ,: :':: :: I .,.: G, out -': .:,.*,: __ " GF) ;
i--- composeRight(in ,:I.:,::,: .Y II ..^, G, out -:^_ :‘;,' 'I::' : FG) ;

1

4 ESI-Operator.nb

The Operatorsplittable interface allows for easily decomposable operators, such as Cholesky
factorizations, to export this functionality. Again, we encapsulate the new action in an object, so
that we can leverage our entire algebraic apparatus with that object as well. Notice that the
composeSplit function allows for sophisticated optimization, such as the introduction of Eisenstat’s
Trick, since the entire state of the operator is available to the implementor.

I Matrices

The Matrix interface encapsulates the behavior of a linear operator. Thus it does not impact the
apply function, but the assumption of linearity will be useful when using the algebraic operations
on operators. Also, information about the eigenstructure could be included in this interface. The
interfaces for deriving transposes and conjugates might also be replicated.

I Solvers

The Solver interface is meant to abstract the action of the inverse of some operator, whether exact
or approximate. The getoperator and setoperator functions provide access to the designated
operator, and the apply function now gives gives the action of the inverse.
Any Solver may also be provided a preconditioner in order to facilitate calculation in the apply
function. The preconditioner is an Operator which may be applied in the course of the
computation. It could be argued that the preconditioner M should be a Matrix, which would
include the case of nested preconditioning using linear solvers, but not nonlinear ones. Notice that
we do not require a separate interface for preconditioners since the traditional logic may be
expressed in terms of the algebra of operators. Examples of traditional preconditioning approaches
will be shown in section 3 to demonstrate the efficacy of this design.

. :~~~~(-~--<~‘,~ ..;:; :;, ‘,,,Z‘ <D-K 7 ;?::,‘:: :- : :., ,,:’ ~, -’ {
irk: getOperator(out .::;I “‘r‘ ,; F) ;
irk:. setoperator (in : .' :,;;,\v': F);

I'::.. getPreconditioner(out : ,: , I 1' " G);
l:i-. setPreconditioner(in 1.. <::. _" G);

i -1: getRes idual (out -:: ‘<,. :-, r) ;
LLL'. setResidual(in '2'. '.:<x," <ii r) ;

.i:l;: resComposeLeft(in is ' ':,.> , j T, out : ,“Y j ::x ' TS) ;
i-i: resComposeRight(in . . . '::, :"z:‘ T, out .i 5~': "' ST) ;

>

ESI-Operator.nb 5

A straightforward extension of the discussion for the Operator interface argues that linear solvers
should extend the Matrix interface since that inverse would be part of the same group GL(N).

The SolverIterative interface makes explicit the assumption that the action of inverse is
approximate and that the approximation is controlled by a ConvergenceTest object. We have
replaced the usual scalar tolerance and maximum number of iterations with an interface to allow
more general, user-specified stopping criteria.

: -; I : I” i- <:: :“” ,,; : ̂ ^ i c. , : : :: < <:, .’ i, ‘I’ c ,-; 2:; “, .‘ : ^ .: ;
i ‘1:. getN&Iterations(out I:::. numIter;tions);

1:
i:!: setNumIterations(in I:‘-: numIterations);

i-1: getConvergenceTest(out :. ::‘. _' :. ',:.c 1' -\ test);
irr:. setConvergenceTest (in .',:‘ : _% ‘:,i‘ _I\" ye ,:_ test);

1

3. Example Implementations

I Gaussian Elimination

Direct solvers are much more straightforward from the perspective of solver design, and thus we
will use Gaussian elimination to illustrate the design goals of our approach. Two concrete solvers
are introduced, GaussianEliminator and SolverTriangular, both of which are direct solvers
derived from ESI-SolverLinear. Only the implementation of GaussianEliminator is shown as
SolverTriangular is straightforward. GaussianEliminator also inherits from
ESI-Operatorsplittable in order to demonstrate the functionality of that interface. The complete
implementation of this example may be found in the ES1 Forum[l].
The setup function constructs the decomposition of A and stores L and U as ESI-Matrix objects. In
addition, it creates two SolverTriangular objects which are passed L and U which encapsulate the
backward and forward solves. Then in apply, we merely execute the apply functions of these
triangular solvers. In this way we avoid a messy solve function in the ESI-Operator interface, and
also enable composition using the inverses.

6
_.-.-.

ESI-Operator.nb

I:::. GaussianEliminator-apply(, '. :..' :' x, '1 .: :: Y) {
,,, : ; i : 1" z ;

ESI-Vector-clone(x, &z);
SolverTriangular-apply(lnvL, x, z);
SolverTriangular-apply(invU, z, y);
ESI-Vector-destroy(z);

0;
I

The operator composition functions for this example are detailed in section. Those for split
composition, however, are overridden by the solver, and are shown below.

1::': GaussianEliminator-split (,,‘ : :,.,.. Y.:: r *L, I :-, ';, : ,:* ,,I *R)
I
L

*L = invU;
*R = inuL;

0;
I

.f.::*: GaussianEliminator-composeSplit (i ;:: : :,-: ,-:I c A, z‘:., <>!->C '.:. IF
*LAR)
I

ESI-Operator-create(LAR);
(*LAR)->composeList ESI_Operator[3];
(*LAR)->composeList[O] 1 invL;
(*LAR)-)composeList[l] = A;
(*LAR)-zcomposeList[2] = invU;

0;
I

ESI-Operator.nb 7

n Incorporating legacy solvers

We would like to enable the user to wrap a legacy solver code so that it conforms to the ESI
interface specification without impacting the functionality of the solver, and perhaps extending it.
The next sections present three scenarios focusing on legacy Krylov solvers which involve different
preconditioner interfaces. We demonstrate that each one can be incorporated into the ES1
framework by embedding some logic into the wrapper code. This approach could be generalized by
deriving a subinterface of Solver corresponding to each scenario.

= Solvers with explicit preconditioners

A solver which accepts a preconditioner may just utilize the getpreconditioner function in the
Solver interface to retrieve the operator, which may then be applied using the apply function. For a
legacy solver, this logic would reside in the wrapper code. As an example, we wrap a Petsc SLES
object[4].

.:),~ -_-.. setup (1
{ ,.‘l. I_ ‘L.’ .” A; /. ‘(,_, .> : :’ . ,:‘ M;

getMatrix(
getPreconditioner(&M);

SLESSetOperators(sles, A, M, DIFFERENT-NONZERO-PATTERN);
0;

1

SLESSolve(sles, x, y, &its);
0;

1

n Solvers with explicit split preconditioners

A solver which expects a split preconditioner may again retrieve the operator using
getpreconditioner, and then perform an interface query to check that it implements
OperatorSplittable, which will be explained in detail in section 4. The factorization may then be
retrieved using split, which again would reside in the wrapper code for legacy solvers. Thus we
might have an implementation such as

8 ESI-Operator.nb

k r setup ()
{ ‘,, , .,,. * ,_,_

,j _' ,. ,, I;
'_,*' " *, A; .' :: .' , , _>, r ,\ ::. ,T‘ M, L, R;

getMatrix(
getPreconditioner(&M);
M.queryInterface(",‘"; _* ,,y;:,:: ,-:* :o_o I:‘< 'I, &I)

(I == YL)
M.split(&L,'&R);

SLESSetOperators(sles, A, L, R, DIFFERENT-NONZERO-PATTERN);
0;

n Solvers without explicit preconditioners

A legacy solver which only requires the application of the system matrix may be wrapped in a
straightforward manner using the setup and solve interface functions. In order to accomodate
preconditioning, a new operator is derived by composition which is then passed to solve, and
additional logic manages the input and output vectors.

?-
setup0

-: *..'- I; ,/ ., A, B; I .; :,y I _,Y M;

getMatrix(
getPreconditioner(&M);
M.queryInterface("-.' I:::. : :,,A',' " *:' 'I, &I)

(I == NULL) {
M.composeLeft(A, &B);

1 {
M.composeSplit(A, &B);

1

SLESSetOperator(sles, B, DIFFERENT-NONZERO-PATTERN);
0:

1

I-Q-- apply(..., <.: : i X, '__ I‘ y) ^,_
I 8 .c

-.- _jj,_
: '. M, L, R;

,I_ \ _' r, s, t;
.i I-j ;, its;

getPreconditioner(&M);
M.queryInterface("~~::: I :::: y,_ I.: :,7x.' -.:‘c 'I, &I)

(I != NULL) {
M.split(M, &L, &R);

1
,I ” ;;ei :.ip tile Skii

A.aP??ly(y, r) ;
r.aypx(-1.0, x)

(L != NULL) {
L.amly(r, s) ;

1 I
M.wply(r, s) ;

1

ESI-Operator.nb 9

The algebraic operations on Operators take as input another Operator and produce a third which
encapsulates the action of both. This designs mirrors the algebraic structure of finite-dimensional
operators, and is also an instance of the Composite design pattern. This allows user code to treat
individual operators and composed oeprators uniformly. The Composite pattern must have an
abstract class the represents both the primitives and containers, which is naturally Operator since
algebraically compositions are again operators. This greatly simplifies client code, which would
normally have to write tag-and-case-statement-style functions to deal with composition.

Lx>L ESI_Operator_apply('.'-~, ":,Y:' ~;-* x, ,'~.: i,"s:.'- : y)
{

: '_ l,.l" __ : 2;

(composeList != NULL) {
ESI-Vector-clone(x, &z);
ESI-Operator-apply(composeList[O], x, z);
ESI-Operator-apply(composeList[l], z, y);
ESI-Vector-destroy(z);

f i“. ESI-Operator-composeLeft(=Y :,;,: .:: 'j' op, : '_! : ,.,:, ^_,_, *newOp)
I

ESI-Operator-create(newOp);
(*newOp)->composeList ~ ,- ,‘,‘T,,,, <
(*newOp)->composeList[O] 1 :' " "

t21;

(*newOp)->composeList[l] = op; '
0;

'*:: ESI-Operator-composeRight(: *: ,,') '18 : op, ' :. '> ,,i ,;e,<.“ \,,,x ^ *newOp)
{

ESI-Operator-create(newOp);
(*newOp)->composeList
(*newOp)->composeList[O] z op;

b('. (). ,:;: 'XL [2] ;

(*newOph->composeList[l] = ;
;

I

10 ESlLOperator.nb

n Splittable Operators

The interface Operatorsplittable allows the operator to be factored into F = LR, and further allows
the creation of a new operator LFR from any given operator F. Not only does this interface enable
black-box split preconditioning, but also optimizations such as Eisenstat’s trick.

5. Solver Composition

I A Motivating Example

We begin with the most elementary type of solver composition, iterative refinement. The idea is
that the solver has not done the best job on the first try and we will need to correct the solution it
has produced. The system is given by

Ax*=b,
where x” is the true solution, and define the residual r as

(1)

r=b-Axl.
The approximate solution x1 is given by

(2)

x1 = A-lb, (3)

where we use a hat to indicate an inexact numerical process. Now the idea is to use the residual to
define a correction to our approximate solution

Ax1 = Am1 r .
We can see that this makes sense by looking at the result of an exact solve in equation (4),

(4)

A-’ r = A-’ (b-Ax) = x* -x1, (5)

so that

Xl + Ax = x* . (6)

And, in fact, if the rigorous error analaysis is carried out, it can be shown that the solution actually
improves even using an inexact solve. This idea may be extended by allowing the matrix to vary at
each step, so that we have

nxk = AM1 rk . (7)

where a is another approximation to A. This leads directly to a method for composing multiple
solvers (or the same solver with itself) by acting successively on the residual of each previous
computation.

ESI-Operator.nb 11

Thus we should include in the Solver interface a getResidual function which returns the current
residual vector. We then include resComposeLeft and resComposeRight functions for solver
composition, which operate in an identical fashion to composeLeft and composeRight from the
Operator interface. Every solver will now be required to store the currect residual of the
calculation, but this does not seem to be an undue burden as this is the most common element of
stopping criteria. An example implemention of this idea is given below:

:.:i? ESI-Solver-resComposeRight(',? ';:>*:.$,- S, : ': :. _' .; T, 1:“' ::,!t. ,!:.
"ST)
{

ESI-Solver-create(ST);
(*ST)->resComposeList = (ESI-Solver *)

ESIMalloc(2* (,',~ ,:*, i \'i y));
(*ST)->resComposeL+st[O] = S;
(*ST)-);esComposeL1st[l] = T;

;
1

i:)i ESI-Solver-apply(: ',. .:8;i:;-.: S, >..‘: ::-,,‘:.:' x, '1 :.' : Y)
I

.- r, 2;

(S->resComposeList != NULL) {
ESI-Vector-clone(x, &z);
ESI-Solver-apply(S->resComposeList[O]
ESI_Solver_getResidual(S->resComposeLbs~~O~),~&r);
ESI-Solver-apply(S->resComposeList[l], r, z);
ESI-Vector-axpy(y, 1.0, z);
ESI-Vector-destroy(z);

1

I General Solver Composition

In general, we may put most instances of solver composition in the framework of nonstationary
linear iterative methods, for which

xk+’ =Xk+i&(f-Axk)=xk+&rk (8)
where f is the rhs vector, A is the system matrix, xk is the current approximation to the solution,
and M is an arbitrary matrix which may depend on the iteration index. Thus we may mimic any
solver-preconditioner combination in this family. A popular representative would be the two level
multiplicative Schwarz algorithm[5], which may be expressed as

1 Algorithm 5.1: Two Level Multiplicative Schwarz

1. xtRT A$ Rf

2. For i = 1 e..p

3. xtX+Bi (f-AFX)

12 ESlLOperator.nb

where f is the rhs vector, AF is the system matrix, AC its coarse representation on the space defined
by the projector R, and the Bi are preconditioners on each domain. All of the variations on this
theme given in Smith et. a1.[5] may be incorporated using only composition and the addition
operation. This may also be extended to full multigrid methods[3], which calculate a series of
corrections based on coarser representations of the system operator.

References

1. TheESIForumislocated athttp://z.ca.sandia.gov/esi.

2 Design Patterns: Elements of Reusable Object-Oriented Sofkware. Erich Gamma,
. Richard Helm, Ralph Johnson, and John Vlissides. Addison-Wesley, 1994.

3 Analysis of a Multigrid Method as an Iterative Technique for Solving Linear Systems.
* Anne Greenbaum. SIAM Journal on Numerical Analysis, 21(3), 1984.

Petsc 2.0 Users Manual. Barry F. Smith, W illiam D. Gropp, Lois Curman McInnes, and
4. Satish Balay. Argonne National Laboratory, TR ANL-95/11, 1995. Available via

ftp://www.mcs.anl/pub/petsc/manual.ps

Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential
5. Equations. Barry F. Smith, Petter E. Bjgrstad, and W illiam D. Gropp. Cambridge

University Press, 1996.

